- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Botvinick, Elliot L (1)
-
Botvinick, Elliot L. (1)
-
Chang, Peter D (1)
-
Eldeen, Sarah (1)
-
Grosberg, Anna (1)
-
Hu, Qingda (1)
-
Keresteci, Bora (1)
-
Levine, Alex J. (1)
-
Morris, Tessa Altair (1)
-
Ramirez, Andres_Felipe Guerrero (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While fluorescent labeling has been the standard for visualizing fibers within fibrillar scaffold models of the extracellular matrix (ECM), the use of fluorescent dyes can compromise cell viability and photobleach prematurely. The intricate fibrillar composition of ECM is crucial for its viscoelastic properties, which regulate intracellular signaling and provide structural support for cells. Naturally derived biomaterials such as fibrin and collagen replicate these fibrillar structures, but longitudinal confocal imaging of fibers using fluorescent dyes may impact cell function and photobleach the sample long before termination of the experiment. An alternative technique is reflection confocal microscopy (RCM) that provides high-resolution images of fibers. However, RCM is sensitive to fiber orientation relative to the optical axis, and consequently, many fibers are not detected. We aim to recover these fibers. Here, we propose a deep learning tool for predicting fluorescently labeled optical sections from unlabeled image stacks. Specifically, our model is conditioned to reproduce fluorescent labeling using RCM images at 3 laser wavelengths and a single laser transmission image. The model is implemented using a fully convolutional image-to-image mapping architecture with a hybrid loss function that includes both low-dimensional statistical and high-dimensional structural components. Upon convergence, the proposed method accurately recovers 3-dimensional fibrous architecture without substantial differences in fiber length or fiber count. However, the predicted fibers were slightly wider than original fluorescent labels (0.213 ± 0.009 μm). The model can be implemented on any commercial laser scanning microscope, providing wide use in the study of ECM biology.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Hu, Qingda; Morris, Tessa Altair; Grosberg, Anna; Levine, Alex J.; Botvinick, Elliot L. (, Frontiers in Physics)null (Ed.)Understanding force propagation through the fibrous extracellular matrix can elucidate how cells interact mechanically with their surrounding tissue. Presumably, due to elastic nonlinearities of the constituent filaments and their random connection topology, force propagation in fiber networks is quite complex, and the basic problem of force propagation in structurally heterogeneous networks remains unsolved. We report on a new technique to detect displacements through such networks in response to a localized force, using a fibrin hydrogel as an example. By studying the displacements of fibers surrounding a two-micron bead that is driven sinusoidally by optical tweezers, we develop maps of displacements in the network. Fiber movement is measured by fluorescence intensity fluctuations recorded by a laser scanning confocal microscope. We find that the Fourier magnitude of these intensity fluctuations at the drive frequency identifies fibers that are mechanically coupled to the driven bead. By examining the phase relation between the drive and the displacements, we show that the fiber displacements are, indeed, due to elastic couplings within the network. Both the Fourier magnitude and phase depend on the direction of the drive force, such that displacements typically propagate farther, but not exclusively, along the drive direction. This technique may be used to characterize the local mechanical response in 3-D tissue cultures, and to address fundamental questions about force propagation within fiber networks.more » « less
An official website of the United States government
